"Giắt túi" công thức hình học lớp 12, thể tích khối đa diện, rất dễ nhớ

Thu Trà 08:27 27/05/2021

Trong cấu trúc đề thi Tốt nghiệp THPT Quốc gia môn Toán, hình học khối đa diện chiếm một lượng kiến thức khá lớn. Hy vọng thông qua bài viết này, các bạn sẽ có một tư liệu ôn tập tóm gọn, chính xác và đầy tính ứng dụng. Bài viết vừa nhắc lại một số định nghĩa cơ bản, đồng thời cũng tổng hợp một vài công thức tính nhanh toán 12 về tính thể tích. Cùng bắt đầu nhé!

Một số khái niệm về công thức hình học 12 khối đa diện cần nhớ.

Khái niệm.

Hình đa diện: là hình được tạo ra bởi một số hữu hạn thỏa mãn hai tính chất:

+ Hai đa giác phân biệt chỉ có thể hoặc không có điểm chung, hoặc chỉ có một đỉnh chung, hoặc chỉ có một cạnh chung.

+ Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng 2 đa giác.

Khối đa diện: là phần không gian được giới hạn bởi một hình đa diện, kể cả hình đa diện đó.

Khối đa diện nếu được giới hạn bởi hình lăng trụ sẽ gọi là khối lăng trụ. Tương tự, nếu được giới hạn bởi hình chóp thì gọi là khối chóp,...

Trong tính toán ta thường đề cập đến khối đa diện lồi: tức là một khối đa diện (H) thỏa mãn nếu nối 2 điểm bất kì của (H) ta đều thu được một đoạn thẳng thuộc (H).

Cho một đa diện lồi, ta có công thức Euler về liên hệ giữa số đỉnh D, số cạnh C và số mặt M: D-C+M=2.

Khối đa diện đều là khối đa diện lồi có tính chất sau đây:

+ Mỗi mặt của nó là một đa giác đều p cạnh.

+ Mỗi đỉnh của nó là đỉnh chung của đúng q mặt.

Một số khối đa diện lồi thường gặp: 

Tổng hợp công thức hình học 12 thể tích khối đa diện

1. Thể tích khối chóp

2. Thể tích khối lăng trụ

3. Thể tích khối hộp chữ nhật

Chú ý rằng: hình lập phương là một hình hộp chữ nhật có 3 cạnh bằng nhau.

4. Công thức tỉ số thể tích

Chú ý đặc biệt: công thức về tỷ số thể tích chỉ được dùng cho khối chóp tam giác. Nếu gặp khối chóp tứ giác, ta cần chia nhỏ thành 2 khối chóp tam giác để áp dụng công thức này.

Trên đây là những tổng hợp của Thiếu niên về công thức hình học 12 chuyên đề thể tích khối đa diện. Hy vọng thông qua bài viết, các bạn sẽ ôn tập, nâng cao được kiến thức của bản thân. Mỗi dạng toán đều cần sự đầu tư chỉnh chu, vì vậy ghi nhớ công thức một cách chính xác cũng là cách để cải thiện điểm trong từng bài thi. Ngoài ra các bạn cũng có thể tham khảo thêm những bài viết khác của  Thiếu niên để có thêm nhiều bí kíp phòng thi bổ ích. Chúc các bạn thành công! 

 

Tin đọc nhiều